Keyword

EARTH SCIENCE > Cryosphere > Glaciers/Ice Sheets > Glacier Topography/Ice Sheet Topography

57 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Update frequencies
Resolution
From 1 - 10 / 57
  • The dataset presented here contains a csv-file including the coordinates, received power of the bed reflection and the two-way travel time of the bed reflection. The X and Y coordinates are projected in EPSG:3031 - WGS 84 / Antarctic Polar Stereographic coordinate system. Data presented here have been frequency filtered and 2D migrated (using a finite difference approach and migration velocity of 0.168 m ns-1), followed by the picking of the bed reflection using ReflexW software (Sandmeier Scientific Software). The received power is calculated within a 280 ns time window centred on, and encompassing, the bed reflection (Gades et al., 2000). This work was funded within the BEAMISH project by NERC AFI award numbers NE/G014159/1 and NE/G013187/1.

  • This dataset contains bed and surface elevation picks derived from airborne radar collected in 2015/16 over Foundation Ice Stream and Filchner Ice Shelf as part of the 5-year Filchner Ice Shelf System (FISS) project funded by NERC (grant reference number: NE/L013770/1) and awarded to the British Antarctic Survey with contribution from the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute. The aim of this project was to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. This collaborative initiative collected ~7,000 line-km of new aerogeophysical data using the 150MHz PASIN radar echo sounding system (Corr et al., 2007) deployed on a British Antarctic Survey (BAS) Twin Otter.

  • SAR-processed two-dimensional radargram data in SEG-Y format acquired from the Institute and Moller ice streams, West Antarctica between mid-December 2010 and mid-January 2011. Data were collected using the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) radar, operated at a centre frequency of 150 MHz, and installed on the BAS Twin Otter aircraft "Bravo Lima". In total, ~25,000km of aerogeophysical data were collected, with coverage extending from the ice stream grounding zone to the ice divide. A high-resolution grid, with a line-spacing of 7.5 x 25 km, was acquired over the central parts of the ice stream catchments. Data were acquired during twenty-eight survey flights (sixteen flown from remote field camp C110, ten from Patriot Hills and two "transit" flights). Funding for this data acquisition was provided by the UK NERC AFI grant NE/G013071/1. These data should be cited as follows: Siegert, Martin et al. (2017); Synthetic-aperture radar (SAR) processed airborne radio-echo sounding data from the Institute and Moller ice streams, West Antarctica, 2010-11; Polar Data Centre, Natural Environment Research Council, UK; doi:10.5285/8a975b9e-f18c-4c51-9bdb-b00b82da52b8

  • A new subglacial bed Digital Elevation Model (DEM) from Ellsworth Subglacial Highlands (ESH) was created from previously gridded bed elevation data and new unpublished radar data. The new DEM includes the upper reaches of Pine Island Glacier, Rutford and Institute Ice Streams and reveals new topographical features. The main findings on this new DEM are two linear deep throughs with a perpendicular transection valley near Subglacial Lake Ellsworth. Additionally, using the new DEM and ice surface elevation data from CryoSat2 ice surface DEM, a hydropotential model was built and used to create a detailed hydropotential model of ESH to simulate the subglacial hydrological network. This approach allowed us to characterize basal hydrology, subglacial water catchments and connections between them. In this characterization we noticed the mismatch between subglacial hydrological catchment and ice surfaces catchment of Rutford Ice Stream, Pine Island Glacier and Thwaites Glacier. Funding was provided by NERC Antarctic Funding Initiative (AFI) grants NE/D008751/1, NE/D009200/1, and NE/D008638/1, and NERC grant NE/G013071/1.

  • This dataset provides the data produced as part of the work published in: Leeson, A. A., Foster, E., Rice, A., Gourmelen, N. and van Wessem, J. M.. 2019. ''Evolution of supraglacial lakes on the Larsen B ice shelf in the decades before it collapsed'' Geophysical Research Letters. It includes 1) shapefiles of supraglacial lakes mapped in both optical (Landsat) and SAR (ERS) satellite imagery, 2) rasters of lake depth, derived from Landsat TM and ETM+ images acquired in 1988 and 2000 and 3) shapefiles of the study area considered in the paper. Funding was provided by ERPSRC grant EP/R01860X/1.

  • Three separate airborne radar surveys were flown during the austral summer of 2016/17 over the Filchner Ice Shelf and Halley Ice Shelf (West Antarctica), and over the outlet glacier flows of the English Coast (western Palmer Land, Antarctic Peninsula) during the Filchner Ice Shelf System (FISS) project. This project was a NERC-funded (grant reference number: NE/L013770/1) collaborative initiative between the British Antarctic Survey, the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. The 2016/17 aerogeophysics surveys acquired a total of ~26,000 line km of aerogeophysical data. The FISS survey consisted of 17 survey flights totalling ~16,000 km of radar data over the Support Force, Recovery, Slessor, and Bailey ice streams of the Filchner Ice Shelf. The Halley Ice Shelf survey consisted of ~4,600 km spread over 5 flights and covering the area around the BAS Halley 6 station and the Brunt Ice Shelf. The English Coast survey consisted of ~5,000 km spread over 7 flights departing from the Sky Blu basecamp and linking several outlet glacier flows and the grounding line of the western Palmer Land, including the ENVISAT, CRYOSAT, GRACE, Landsat, Sentinel, ERS, Hall, Nikitin and Lidke ice streams. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an iMAR strapdown gravity system, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • Polarimetric phase-sensitive radar measurements were collected at the Western Antarctic Ice Sheet (WAIS) Divide on the 25th and 26th December 2019. The measurements were conducted at 10 sites along a 6 km-long transect ~5-10 km northeast of the location of the WAIS Divide Deep Ice Core. At each site, a suite of four quadrature (quad-) polarimetric measurements were collected using an autonomous phase-sensitive radio echo sounder (ApRES) in a single-input single-output (SISO) configuration. The study is part of the Thwaites Interdisciplinary Margin Evolution (TIME) project of the International Thwaites Glacier Collaboration (ITGC), and is a collaboration between the United States National Science Foundation (NSF) and the United Kingdom Natural Environment Research Council (NERC). It was funded by UK Natural Environment Research Council (NERC) research grant NE/S006788/1 and USA National Science Foundation (NSF) research grant 1739027.

  • An airborne radar survey was flown as part of the GRADES-IMAGE project funded by BAS over the Antarctic Peninsula, Ellsworth Mountains and Filchner-Ronne Ice Shelf (also including the Evans Ice stream and Carson Inlet) mainly to image englacial layers and bedrock topography during the 2006/07 field season. Operating from temporary field camps at Sky Blu, Partiot Hills and out of RABID depot (Rutford Ice Stream), we collected ~27,550 km of airborne radio-echo sounding data over 100 hours of surveying. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, and an ice-sounding radar system (PASIN). Note that there was no gravimetric element to this survey. We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • This gridded dataset provides geometry (ice thickness and bedrock topography) covering the Pine Island Glacier catchment. It has been created using the principle of mass conservation, given observed fields of velocity, surface elevation change and surface mass balance, together with sparse ice thickness data measured along airborne radar flight-lines. Previous ice flow modelling studies show that gridded geometry products that use traditional interpolation techniques (e.g. Bedmap2) can result in a spurious thickening tendency near the grounding line of Pine Island Glacier. Removing the cause of this thickening signal, in order to more accurately model ice flow dynamics, has been the motivation for creating a new geometry that is consistent with the conservation of mass. This data was funded by a PhD project within the iSTAR-C programme (with NERC grant reference NE/J005738/1).

  • We present here the Bedmap2 ice thickness, bed and surface elevation aggregated points and survey lines. The aggregated points consist of statistically-summarised shapefile points (centred on a continent-wide 500 m x 500 m grid) that reports the average values of ice thickness, bed and surface elevation from the full-resolution survey data and information on their distribution. The points presented here correspond to the additional points to Bedmap1 used for the gridding of Bedmap2. The data comes from 14 different data providers and 75 individual surveys. They are available as geopackages and shapefiles. The associated Bedmap datasets are listed here: https://www.bas.ac.uk/project/bedmap/#data This work is supported by the SCAR Bedmap project and the British Antarctic Survey''s core programme: National Capability - Polar Expertise Supporting UK Research